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Individuals show differences in the extent to which psycholinguistic variables predict their
responses for lexical processing tasks. A key variable accounting for much variance in lex-
ical processing is frequency, but the size of the frequency effect has been demonstrated to
reduce as a consequence of the individual’s vocabulary size. Using a connectionist compu-
tational implementation of the triangle model on a large set of English words, where ortho-
graphic, phonological, and semantic representations interact during processing, we show
that the model demonstrates a reduced frequency effect as a consequence of amount of
exposure to the language, a variable that was also a cause of greater vocabulary size in
the model. The model was also trained to learn a second language, Dutch, and replicated
behavioural observations that increased proficiency in a second language resulted in
reduced frequency effects for that language but increased frequency effects in the first lan-
guage. The model provides a first step to demonstrating causal relations between psy-
cholinguistic variables in a model of individual differences in lexical processing, and the
effect of bilingualism on interacting variables within the language processing system.
� 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY

license (http://creativecommons.org/licenses/by/4.0/).
Introduction

Word frequency is a key variable in predicting differ-
ences in word processing efficiency: High frequency words
are recognized faster and more accurately than low fre-
quency words (Forster & Chambers, 1973). Measured
against a range of other psycholinguistic properties, fre-
quency accounts for a far larger amount of variance in
response times and accuracies than other variables. For
instance, in one of the earlier ‘‘mega-studies” of word pro-
cessing, Balota, Cortese, Sergent-Marshall, Spieler, and Yap
(2004) found that frequency exceeded neighbourhood size
and consistency in explaining variance of response times
for word naming, and matched the size of the effect of
word length. For lexical decision, they found that the stan-
dardized regression coefficient for frequency was at least
four times as great as that of any other psycholinguistic
variable (for other regression analyses demonstrating a
similarly greater effect of frequency, see Brysbaert,
Stevens, Mandera, & Keuleers, 2016; Brysbaert et al.,
2011; Cortese & Khanna, 2007; Keuleers, Stevens,
Mandera, & Brysbaert, 2015; Spieler & Balota, 1997; Yap
& Balota, 2009). Frequency is taken to indicate greater effi-
ciency of access, more salient representation of the lexical
item, and greater availability of the representation within
the individual’s vocabulary (Adelman, Brown, & Quesada,
2006).
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The frequency effect is typically treated in analyses as a
random effect as if variance across participants is random.
Hence, until very recently, frequency effects have tended to
have been related to mean group responses to individual
words, rather than appraised in terms of individuals
responding to individual words. However, in the first study
on the phenomenon it was already reported that the fre-
quency effect differed between participants who had small
and large vocabularies. In a largely overlooked paper,
Preston (1935) was the first to examine the word fre-
quency effect. She measured the ‘speed of word perception’
for familiar and unfamiliar words of the same length. The
stimulus words consisted of 50 familiar and 50 unfamiliar
six-letter two-syllable words chosen on the basis of
Thorndike’s (1931) 20,000 Word List. The familiar words
were selected from the 1500 highest words of the list
(i.e., those used most frequently in printed matter). The
unfamiliar words were selected from the 19th and the
20th thousand lowest words. Speed of word perception
was ‘‘measured by the time between the exposing of a
stimulus word and the verbal reading of it” (nowadays
called a word naming task). Eighty-one members of ele-
mentary psychology classes at the University of Minnesota
served as participants. Their average ‘‘perception time” for
the familiar words was 578 ms; that for the unfamiliar
words 691 ms.

A second purpose of Preston’s study was ‘‘the study of
the relation of various measures of reading ability to speed
of word perception.”1 The reading ability of the participants
was determined by the administration of the Vocabulary
Test of the Minnesota Reading Examination, the Chapman
Cook Speed of Reading Test, and Test V of the Iowa Silent
Reading tests. The first test contained 100 words with five
possible definitions from which examinees had to select
the correct definition. In the Chapman Cook Speed of Read-
ing Test participants were presented with 25 short para-
graphs in which one word spoiled (sic) the paragraphs.
Participants had to find as many intruder words as possible
in 2.5 min and cross out these words. Test V of the Iowa
Silent Reading tests was a paragraph comprehension test,
in which 12 paragraphs had to be read and 3 questions
answered per paragraph. Preston observed significant nega-
tive correlations between the language proficiency test
scores and the word perception response times, with the
highest correlation between vocabulary size and word per-
ception response times, and the lowest correlation between
text comprehension and word perception response times.
The correlation was higher for the unfamiliar words than
the familiar words (e.g., the correlation between vocabulary
size and word perception response time was �.508 for the
unfamiliar words, and �.412 for the familiar words). In other
words, the relation between vocabulary size and response
times was greater for low- than high-frequency words, sug-
gesting that individual differences in reading responses may
reduce as a consequence of exposure.

Preston’s (1935) paper was not mentioned in Howes
and Solomon’s (1951) article examining the relationship
1 There was also a third purpose: To determine the test-retest reliability
of the speed of word perception measure by asking participants to name
the words twice with six days or more in-between. The reliability was .93.
between word frequency and visual duration thresholds
in a word identification task. This publication is (erro-
neously) considered to be the start of word frequency
research by many researchers. In two experiments, Howes
and Solomon presented evidence that the visual duration
threshold in word identification decreased as a function
of the logarithm of word frequency (also based on Thorn-
dike’s counts). Importantly, and unfortunately, no individ-
ual differences were examined and the word frequency
effect was presented as a group effect, assumed to be
observed to the same degree in all participants. Howes
and Solomon’s view has dominated the literature, even
though occasionally differences in the frequency effect
between groups have been investigated (e.g., Chateau &
Jared, 2000; Lewellen, Goldinger, Pisoni, & Greene, 1993;
Sears, Siakaluk, Chow, & Buchanan, 2008).

Our own interest in individual differences in the word
frequency effect arose from a series of experiments pub-
lished by Yap, Balota, Tse, and Besner (2008).2 In this article
the authors presented data from three different universities
on the same lexical decision task. Table 1 gives a summary of
the finding that caught our attention. As in Preston’s (1935)
study, students with a smaller vocabulary size had longer
reaction times and, more importantly, showed a larger fre-
quency effect.

The influence of vocabulary size on the frequency effect
was later replicated in a large-scale analysis of individual
differences in the English Lexicon Project (Yap, Balota,
Sibley, & Ratcliff, 2012).

At first sight, it seems surprising that people with a lar-
ger vocabulary are more efficient at activating the correct
representation than those with a smaller vocabulary, given
that they have to select among more candidates in the
vocabulary (Lewellen et al., 1993). Still, there are at least
four mechanisms that may contribute to the effect. The
first is that a larger frequency effect may be a side-effect
of longer reaction times (RTs; Faust, Balota, Spieler, &
Ferraro, 1999): Comparing the data from Yap et al.
(2008) shown in Table 1, 678 ms is 11% longer than 612,
and 844 is 15% longer than 732 ms. If we assume that part
of the RT to words is not due to word processing but to
constant durations such as those involved in stimulus
transmission and action planning and performance, it
could even be possible that the proportional increase
between low and high frequency words is the same across
the groups. For the example at hand, this would be the case
when the constant time period for stimulus transmission
and action is around 438 ms, as then for the lowest vocab-
ulary group the stimulus processing time would be 240 ms
[678–438], and 174 ms for the highest vocabulary group,
which is 38% different. For the high frequency words, the
differences between the highest and lowest vocabulary
group would be 406 ms and 294 ms, which is again 38%
more. Thus, it is feasible that vocabulary size affects word
processing speed generally, rather than affecting the vari-
ance associated with the frequency effect.
2 Just like many other researchers, we were until recently unaware of the
Preston (1935) paper. We thank Andy Ellis for pointing it out to us.



Table 1
Frequency effect of 3 groups of students with different vocabulary sizes on the same lexical decision task, based on Yap et al. (Experiments 2–4, clear
presentation condition).

University Vocabularya RTLF (ms) RTHF (ms) Effect (ms)

Washington U. 18.7 678 612 66
Waterloo 17.7 753 658 95
Albany (SUNY) 16.9 844 732 112

a As determined with the Shipley (1940) vocabulary test: Vocabulary age is estimated on the basis of 40 words with 4 response alternatives each.
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A second explanation for individual differences in the
frequency effect could be that the more efficient retrieval
operation in people with large vocabulary sizes is due to
their higher intelligence. Indeed, vocabulary tests are used
as a part of measures of intelligence, and load on g
(Wechsler, 2008), and g in turn relates to processing speed
(Salthouse, 1996). So, the relation between the frequency
effect and vocabulary size could be an artefact of intelli-
gence. However, this interpretation received a serious set-
back when it was observed that exactly the same function
accounts for the relation between vocabulary size and fre-
quency effects in second language (L2) processing as in
first language (L1) processing (Brysbaert, Lagrou, &
Stevens, in press; Diependaele, Lemhöfer, & Brysbaert,
2013). The frequency effect is larger in L2 than L1, but this
difference disappears when vocabulary size is taken into
account. The apparently larger effect of frequency in L2 is
thus because people generally know fewer words in L2
than in L1. It is difficult to maintain that people would be
less intelligent in L2.

A third possible contribution to the correlation between
vocabulary size and the frequency effect relates to differ-
ences in the type of input. Some people may be exposed
to more varied input than others. For instance, it is well
established that written language comprises a more varied
vocabulary than spoken language (for reviews, see
Kuperman & Van Dyke, 2013; Pfost, Dörfler, & Artelt,
2013), at least partially because word repetition is toler-
ated in speech but not in writing. However, even when
modality of input is controlled, Kuperman and Van Dyke
(2013) showed that a larger input is associated with rela-
tively more exposure to low frequency words.

Finally, it could be the case that higher exposure by
itself is enough to explain the smaller word frequency
effect, without any need for extra variables. In that scenar-
io, both the small frequency effect and the large vocabulary
size would be consequences of language exposure, which
has a larger effect on the efficiency of word retrieval than
on the cost of interword competition. Such a view would
be by far the simplest interpretation and, hence, it is
worthwhile to examine whether it can be observed in com-
putational models of word processing.

The type of computational model best suited to investi-
gate learning effects consists of the distributed connection-
ist models (Chang, Furber, & Welbourne, 2012; Harm &
Seidenberg, 2004; Monaghan & Ellis, 2010; Plaut,
McClelland, Seidenberg, & Patterson, 1996; Welbourne &
Lambon Ralph, 2007). In these models, words are not rep-
resented as localist representations (nodes in a network),
but as activation patterns across orthographic, phonologi-
cal and semantic layers. The connection weights between
the layers determine the efficiency with which one repre-
sentation can activate the other. These depend on a num-
ber of factors, including the number of times an item has
been presented to the model. Stimuli that are often pre-
sented succeed in a greater accumulation of adaptation of
the weights in the network, so that the output they gener-
ate resembles the desired output to a closer extent. In con-
trast, stimuli with a low presentation probability have less
impact on the organisation of the network and take more
time to be effectively learned, resulting in larger error as
the model attempts to produce phonological or semantic
representations from a given orthographic input. As a
result, distributed networks are able to simulate frequency
effects without any requirement of the researcher to intro-
duce a frequency dependent parameter (see, e.g., Harm &
Seidenberg, 1999; Seidenberg & McClelland, 1989). In
these models, high frequency words are processed more
accurately than low frequency words because the connec-
tions supporting learning the mapping between ortho-
graphic, phonological, and semantic representations have
undergone more adjustment to reduce error within the
system for the higher frequency words. Thus, the model
processes words to which it has been exposed with greater
fidelity. Accuracy of production of phonological (for word
naming) or semantic (for lexical decision) representations
has been taken to reflect response times in behavioural
lexical processing in previous models (Plaut et al., 1996;
Seidenberg & McClelland, 1989).

The triangle model refers to the connectionist model
where orthographic, phonological, and semantic represen-
tations interact in word processing (Harm & Seidenberg,
2004; Seidenberg & McClelland, 1989). This model has
been tested on a range of group level effects, such as word
frequency, yet it also has the potential to reflect individual
differences in performance. In particular, the various theo-
ries about the relation between vocabulary knowledge,
first and second language facility, and exposure can be
tested for the extent to which they give rise to frequency
effects within the model.

There are alternative models that could also potentially
be used to test these individual differences in performance.
The dual route cascaded (DRC) model implements two
routes for mapping from orthography to phonology, a sub-
lexical route that maps letters to sounds via a set of
grapheme-phoneme correspondence rules, and a lexical
route containing word units which directly, and simultane-
ously, activate the phonology corresponding to the whole
word (Coltheart, Rastle, Perry, Langdon, & Ziegler, 2001).
Such models implement word frequency effects by adding
an inhibitory bias that is inversely proportional to the log
of the frequency of the word. Adelman and Brown (2008)
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showed how variables within this model could be system-
atically varied to test fit of the model to data, and Ziegler
et al. (2008) tested the extent to which adjusting variables
in the DRC model could simulate individual variation in
reading as a consequence of visual letter, word-level
phonological, and segmental phonological skills. In the
case of the frequency effect, this could be adjusted within
the DRC model by varying the gradient of the frequency
bias inhibitory function, or by varying the frequencies of
words in the model’s input, as a proxy to adjusting the
model’s environment. A third alternative would be to vary
the relative contribution of the lexical and sublexical
routes to word naming performance. As the sublexical
route is not affected by individual word frequency, word
frequency effects would be reduced if the sublexical route
contributes more to the model’s response. However, these
effects would have to be implemented in the model, rather
than be an emergent consequence of the way the reading
system interacts with the environment. A more recent
instantiation of a dual route model, comprising lexical
and sublexical routes, is the CDP+ model (Perry, Ziegler,
& Zorzi, 2007). For this model, the lexical route is similar
to that of the DRC, but the sublexical route learns to adjust
weights between particular letters and phonemes accord-
ing to their relative frequencies. Consequently, frequency
effects at the word level are again implemented within
the lexical route, but the overall size of the frequency effect
could again be altered by varying the relative contribution
of lexical and sublexical routes to performance. In
Adelman, Sabatos-DeVito, Marquis, and Estes’ (2014) test
of individual differences within the CDP+ framework, they
interpreted frequency effects as emerging only from the
former variable: via adjustment of the frequency inhibitory
bias in the lexical route.

Our aim in this paper is to determine the extent to
which quantitative changes in exposure to words can
affect the frequency effect in word naming. We report
the results from a series of simulations systematically
examining the size of frequency effects during training of
the connectionist triangle model of reading (Harm &
Seidenberg, 2004; Seidenberg & McClelland, 1989). Exam-
ining the triangle model enables us to ascertain the extent
to which exposure alone has an effect on frequency effects,
without imposing adaptations to the system, as would be
the case using the DRC or CDP+ models as starting points.
The precise characteristics of the model we view as not
being the critical issue, but rather we provide an explo-
ration of the principle of how environment can impact on
psycholinguistic factors affecting word representation.

In Simulation 1, we determined whether the beha-
vioural observation of the reduced frequency effect relat-
ing to vocabulary size may be a consequence of greater
exposure to the vocabulary in the model. We tested
whether exposure results in decreasing frequency effects
for both naming (simulated by orthography to phonology
mappings within the model) and lexical decision (simu-
lated by orthography to semantics mappings). We antici-
pate that reductions in the frequency effect may result
from increasing the efficiency of mappings in the model,
as a consequence of extended exposure to the vocabulary.
We further tested whether the model’s performance is due
to a linear improvement in responding to all words, or
whether a reduced frequency effect may be caused by
improved fidelity of low frequency word mappings.

Simulations 2 and 3 teased apart the relative contribu-
tion of vocabulary exposure and vocabulary size, by train-
ing the model on different vocabulary sizes. We predicted
that vocabulary exposure would be the key factor resulting
in changes in the frequency effect. Finally, Simulation 4
tested the effect of learning a second language on fre-
quency effects in the model, and whether increasing profi-
ciency in the second language resulted in reduced
frequency effects in this second language and increased
frequency effects in the first language, as a result of vocab-
ulary size differences, in turn resulting from differences in
exposure to the two languages. For this simulation, we
introduced a second language – Dutch – to the triangle
model in order to investigate the relative frequency effects
within the model for its reading of English and Dutch
words, as exposure to each language varied.
Simulation 1: frequency effects in the triangle model of
reading

Method

Architecture
The model was based on the connectionist triangle

model of Harm and Seidenberg (2004), and is shown in
Fig. 1. The model comprised three representational layers,
where orthographic, phonological, and semantic represen-
tations of words were presented. It was limited to mono-
syllabic words.

The phonological layer was connected to and from a set
of 50 cleanup units to enable the model to develop stable
phonological representations for words. The phonological
layer was connected to the semantic layer via a set of
300 hidden units. The semantic layer was connected to
and from a set of 50 semantic cleanup units. The semantic
layer was connected to the phonological layer via another
set of 300 hidden units.

A 4 unit context layer was connected to the semantic
layer via a set of 10 hidden units. This context layer
enabled the model to disambiguate homophones using
context. For each homophone, a different context unit
was active. Which unit was active for each set of homo-
phones was selected randomly, such that each context unit
was active to approximately the same frequency across the
training set. For words which were not homophones, all
context layer units were inactive.

The orthographic layer was connected to the phonolog-
ical layer via a set of 100 hidden units, and to the semantic
layer via a set of 300 units. A different number of units was
required for successfully learning the mapping from
orthography to phonology than for orthography to seman-
tics (see Plaut et al., 1996, for requirements of learning
pseudo-regular and arbitrary mappings).
Training set
Written forms of monosyllabic words were presented at

the orthographic layer, which comprised 10 letter slots,
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Fig. 1. Architecture of the triangle model of reading used in the current simulations.
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within which each letter was represented as one unit
active from a set of 26. Words were vowel-centred, such
that the first vowel in the word was presented at the fourth
letter slot, with two slots available for up to two consecu-
tive vowels in the orthography. Consonants preceding the
vowel were presented across slots 1–3, with these onset
consonants in adjacent slots to the vowel. The remaining
consonants and following vowels were presented in slots
commencing at slot 7 and filled slots adjacent to the two
vowel slots. Thus, for the word ‘‘plane”, the orthographic
representation was presented across the slots _ p l a _ n
e _ _ _, and for ‘‘aunt”, the orthographic representation
was _ _ _ a u n t _ _ _. A letter present in each position
was represented as the unit in the slot associated with that
letter having activity 1.

Phonological forms of words were presented at the
phonological layer, which comprised 8 phoneme slots,
with each slot composed of a set of 25 phonological fea-
tures. Phonological features were exactly those used by
Harm and Seidenberg (2004). Phonological representations
of words were presented with three slots for the onset, one
slot for the vowel, and four slots for the coda. Onset and
coda consonants were presented across slots directly adja-
cent to the vowel. Diphthongs, and long and short vowels
were all represented as a set of features active in a single
vowel slot. So, for the word ‘‘plane”, the phonological rep-
resentation was _ p l eI n _ _ _. Phoneme features had activ-
ity 1 in phoneme slots that were present in the input.

The semantic representations of each word were
acquired from Wordnet (Miller, 1990), using the same
algorithm described by Harm and Seidenberg (2004). The
semantic representation for each word comprised an acti-
vated subset of 2446 semantic features. Presence of a fea-
ture was represented with activity 1.

There were a total of 6229 words, which comprised all
monosyllabic words in English which had both a phonolog-
ical representation in the CMU pronouncing dictionary
(Weide, 1998) and a semantic representation listed in
Wordnet (Miller, 1990). This set of words was slightly
greater than that used in Harm and Seidenberg (2004)
because in their simulations they only included word
forms with their most frequent inflected form, whereas
we included all monosyllabic inflected versions of the
word.

Frequency of words was derived from the Wall Street
Journal corpus (Marcus, Santorini, & Marcinkiewicz,
1993), and frequency was log-compressed prior to training
of the model. This measure of frequency was that
employed in the first implementation of the triangle model
(Harm & Seidenberg, 2004), and is included here for com-
parison with this earlier version. Note that this compres-
sion maintains the relative frequency order of words, but
substantially reduces the range of frequencies for the
model. The model therefore applies a stringent test of the
extent to which the changing frequency effects in beha-
viour can be simulated with this smaller distinction
between word frequencies.

Training and testing
Five versions of the model were trained as separate sim-

ulations, with different randomised starting weights, and
different random orderings of training patterns selected
according to frequency. This ensured that the observed
results were not due to particular starting configurations
of the model.

Pretraining. The model was first trained to learn to map
between phonological and semantic representations, as
well as to develop stable phonological to phonological
mappings, and semantic to semantic mappings.

For the phonological to phonological mapping trials, a
phonological representation of a word was presented at
the phonological layer. Then, the activity in the model
was allowed to cycle for 6 time steps, and for time steps
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7 and 8 the model was required to reproduce the phono-
logical representation of the word. Similarly, for the
semantic to semantic trials, the model was required to
reproduce the semantic representation presented at the
semantic layer in time steps 7 and 8. For the phonological
to semantic mappings, the phonological representation
and the context representation was presented to the model
for a word for all 8 time steps, and the model was required
to produce the semantic representation of the word in time
steps 7 and 8. For semantics to phonological mappings, the
semantic representation was presented at all time steps,
and the model was required to produce the phonological
representation of the word at time steps 7 and 8. As the
semantic representation was unambiguous with respect
to producing the phonological form of the word, the con-
text layer was not necessary in order to form this mapping.

The model was trained using recurrent backpropaga-
tion, with cross-entropy error computed between the tar-
get and the model’s actual production for each word’s
representation. The learning rate was set at 0.05. The pre-
training comprised 2 million word presentations, with
words selected according to their log-compressed fre-
quency, in the range [0.05,1]. 10% of trials were the phono-
logical to phonological mapping, 10% were semantics to
semantics, 40% of trials mapped from semantics to phonol-
ogy, and the remaining 40% mapped from phonology to
semantics.

Reading training. Following pretraining, the model then
learned to map from orthographic forms onto phonological
and semantic representations. The orthographic represen-
tation of a word was presented at the orthographic layer,
and simultaneously the context layer representation was
also presented. Then, from time steps 7 to 12, the model
was required to produce the phonological and the seman-
tic representation for that word. Cross-entropy error was
backpropagated through the model, and the learning rate
was set at 0.01. The model was trained for 1 million
presentations.

Testing. The pretraining model was tested on both phono-
logical to semantic trials, and semantic to phonological tri-
als. For the phonological to semantic trials, the
phonological representation of each word was presented,
and then the model’s production at the semantic layer at
the end of the 8 time steps of activation was recorded.
The closeness of the model’s semantic production was
determined by measuring the sum squared error over the
semantic layer. The accuracy of the model’s semantic pro-
duction was measured by computing the cosine of the
model’s actual semantic representation against the seman-
tic representations of each of the 6229 words in the train-
ing set. If the cosine distance was lowest for the target
representation then the model was judged to be accurate.

For the semantic to phonological trials, the semantic
representation was presented and then the phonological
production was compared to the target phonological repre-
sentation after 8 time steps, then the closeness of the mod-
el’s production was determined by measuring sum squared
error. Accuracy of the model was measured by determining
for each phoneme slot the closest phoneme to the model’s
actual production. If the closest phonemes matched the
target in all positions then the model’s phonological pro-
duction was judged to be accurate.

For the reading trials, the model was presented with the
orthographic representation of each word, and closeness
and accuracy of the model’s actual production at both the
semantic and the phonological layers were recorded. As
with behavioural studies of reading, we distinguish accu-
racy of responses from response time measures. The model
may produce an accurate response (closer to the target
than any other representation in the training set) but to
varying degrees of closeness in terms of the actual versus
target representation. Closeness of the model’s phonologi-
cal production to the target phonology was taken to relate
to response time measures of naming, in accordance with
previous connectionist models of reading (e.g., Harm &
Seidenberg, 2004; Monaghan & Ellis, 2010; Plaut et al.,
1996) as it provides an indication of the ease with which
the model can generate the phonological form of the word
from its orthographic input. Similarly, the closeness of the
semantic production was related to response times in lex-
ical tasks involving generation of a semantic representa-
tion, as again the closeness reflects the ease with which
the model can produce a meaning representation from
orthographic input.

An alternative measure of accuracy of semantics would
be to determine whether each feature was activated above
or below a given threshold, rather than to measure accu-
racy based on relative distance to other patterns in the
training set. To determine whether taking a unit threshold
of 0.5 at the semantic output layer resulted in a different
reflection of accuracy, we compared the model’s perfor-
mance for the nearest neighbour and threshold function
accuracy measures. At the end of training, the model was
able to solve the task to a high degree of accuracy for both
accuracy measures (for nearest neighbour: mean = 99.7%,
SD = .05%, for threshold: mean = 98.3%, SD = .07%). There
was a high degree of correspondence between the thresh-
old measure of accuracy and the nearest semantic repre-
sentation measure: mean agreement = 98.5% of patterns,
SD = .6%, v2(1) = 3828.3, p < .0000001. Thus, the model
was able to solve the mapping task to a high degree of
accuracy regardless of the precise measure of accuracy.

Results

The model’s performance for accuracy was assessed
using generalized linear mixed effects models, and mea-
sures for frequency effects were assessed on the model’s
error. The significance of individual and interacting factors
was assessed by determining whether the model fit
improved significantly by applying a likelihood ratio test
comparison between models with and without the factor
or interaction of interest.

Pretraining
Pretraining was halted after 2 million patterns, and at

this point the model achieved mean accuracy of 96.0%
(SD = 1.9%) for mapping from semantic to phonological
representations, and 87.8% (SD = 1.2%) for mapping from
phonological to semantic representations (see Fig. 2). To



Fig. 2. Performance of the triangle model during pretraining between
phonological and semantic representations (S? P is semantics to
phonology mappings, P? S is phonology to semantics mappings). Error
bars show ±1 SEM of mean accuracy by simulation.

Fig. 3. Performance of the triangle model during training on orthography
to phonological (O? P) and orthography to semantic (O? S) represen-
tations. Error bars show ±1 SEM of mean accuracy by simulation.
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test whether semantic representations were slower to
acquire than phonological representations during learning,
we compared the fit of binary logistic linear mixed effects
models. As a baseline, we constructed a model with simu-
lation (simulation one to five) and word (each of the 6229
vocabulary items) as random effects, and log of training
epoch as a fixed effect, with accuracy (correct or incorrect)
of the model as the dependent variable. We then tested
whether adding mapping type (semantics to phonology,
or phonology to semantics) to this model resulted in a sig-
nificant improvement of fit. We found that it did, v2(1)
= 28,851, p < .001, thus, the computational model learned
to map from semantics to phonology more accurately than
phonology to semantics. This was likely because the
semantic input representations were more distinct,
enabling greater differentiation of input patterns during
training.
Reading accuracy
For the full reading model, accuracy for mapping from

orthography to phonology and to semantics is shown in
Fig. 3. By the end of 1 million patterns of training, the
model was able to accurately produce the phonological
(mean = 99.9%, SD = .03%) and the semantic representa-
tions (mean = 99.8%, SD = .05%). A binary logistic mixed
effects model with simulation and word as random effects,
and log of training epoch as fixed effect was improved in fit
by adding in an additional fixed effect of mapping type
(orthography to phonology, or orthography to semantics),
v2(1) = 47,542, p < .001. Adding an interaction between
training epoch and mapping type also improved fit signif-
icantly, v2(1) = 244.24, p < .001, indicating that phonologi-
cal representations were learned more accurately than
semantic representations especially in the early stages of
training.
Frequency effects
To determine the extent to which frequency effects var-

ied as a consequence of exposure, the correlation between
frequency and the closeness of the model’s output produc-
tion compared to the target representation, as measured
by mean square error, for phonological and semantic rep-
resentations is shown in Fig. 4. Frequency effects can then
be determined by the extent to which the frequency of a
word improves the fit of the statistical model to the com-
putational model error data. Changes in the frequency
effect can then be determined by examining the interac-
tion of frequency with other fixed factors in the model.

To compare frequency effects across the phonological
and semantic representations, a mixed effects model with
simulation and word as random effects, and log of training
epoch as fixed effect was constructed as a baseline. Adding
mapping (orthography to phonology, or orthography to
semantics) as a fixed effect improved model fit, v2(1)
= 246,635, p < .001, as did adding word frequency, v2(1)
= 1920.6, p < .001. This indicated that, overall, there was a
frequency effect in the triangle model’s performance. Add-
ing the interaction between frequency and mapping also
improved fit, v2(1) = 70,012, p < .001. This indicated that,
as anticipated, the frequency effect was larger for the
semantic representations than for the phonological repre-
sentations. This is consistent with a greater effect of
item-level properties for arbitrary than for consistent map-
pings, both within mappings, such as in the frequency by
consistency effect for single word naming tasks (Taraban
& McClelland, 1987) and across mappings, such as the lar-
ger frequency effect as a predictor of lexical decision
response times (which has been proposed to involve
semantic representations) compared to naming times for
single words (Ghyselinck, Lewis, & Brysbaert, 2004).

In general, the frequency effect for both semantic and
phonological representations declined with length of train-
ing. For instance, for the semantic representations change



Fig. 4. Frequency effect for orthographic to phonological (O? P) and
orthographic to semantic (O? S) representations across learning. The
frequency effect initially increases in magnitude (i.e., the negative
correlation between frequency and output quality becomes stronger) as
a function of practice and then decreases to a lower level. The frequency
effect is larger for orthography to semantics than for orthography to
phonology. Error bars show ±1 SEM of mean correlation between word
frequency and error by simulation.
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in correlation from 100,000 training patterns (mean
r = �.431, averaged over the five simulations) to 1 million
reading patterns (mean r = �.134) was significant,
Z = 18.19, p < .001. Similarly, for the phonological represen-
tations, change from 100,000 (mean r = �.149) to 1 million
(mean r = .008) was significant, Z = 8.87, p < .001. Thus, in
the triangle model the reduction in frequency effect was
consistent with the theoretical proposal that exposure to
words results in a reduction of the frequency effect.

However, the decline in the frequency effect was not
monotonic. Instead the effect of frequency with training
seemed to demonstrate a U-shaped curve. Over the early
stages of training, the frequency effect gradually increased
in magnitude before decreasing from approximately
100,000 training patterns onwards. To test whether a
quadratic curve was a better fit to the data than a linear
function, we compared two models for the phonological
and the semantic representations separately. The first
model was a linear mixed effects model with an interac-
tion between a linear effect of log epoch of training and fre-
quency, and the second was a linear mixed effects model
with an interaction between a quadratic effect of log epoch
of training and frequency. Simulation and word were ran-
dom effects. For the phonological representations, the
quadratic model was a better fit than the linear model,
v2(2) = 17,599, p < .001. The quadratic model was also a
better fit for the semantic mappings, v2(2) = 11,532,
p < .001.

It is possible, then, that the frequency effect has two
components: First, an effect of noise reduction related to
learning to generate stable and accurate representations
within phonology and within semantics, which occurs dur-
ing the early stages of learning. Initial increases in fidelity
result in increasing frequency effects. Then, second, contin-
ued exposure to the stimuli results in a gradual erosion of
the frequency effect. Such an effect would be hard to
explain with a single component view of the effect of fre-
quency, in which case we would expect a better fit of a lin-
ear relation between frequency and training time on
accuracy levels. Fig. 5 shows the model’s error in producing
phonological and semantic representations for every word
in the corpus, averaged over the five simulations at differ-
ent stages of training. At 10,000 epochs of training, the
model demonstrated high error rates for patterns at all fre-
quencies. After 100,000 epochs of training, error is pre-
dominantly for lower word frequencies. After 1 million
epochs of training, the variation for low frequency words
has also reduced, indicating that the reduction in the fre-
quency effect is due to reduced error for the low frequency
items as a result of exposure (see Diependaele et al., 2013,
for similar patterns in behavioural responses, but see
Kuperman & Van Dyke, 2013, for an alternative perspec-
tive). Fig. 6 summarises these data by showing how the fre-
quency effect changes with training time for higher
(frequency >0.5) and lower (frequency 6.5) frequency
words.

The reduction in frequency effects for later training is
therefore consistent with Plaut et al.’s (1996) account of
how accuracy of reproduction of an individual word relates
to training exposure in associative learning models, and
consequently reduces the opportunity for other variables
to contribute variance to the model’s performance for
mapping a particular pattern. This is because, as the model
gets closer to producing the target representation at the
output the slope of change of the activation function gets
shallower, meaning that the contribution of competing,
or interfering, factors that are general to the set of patterns
learned, rather than the particular pattern being processed,
have less of an impact on performance. Such an effect is a
result of error-driven learning mechanisms, such that, as
error reduces for the higher-frequency words, adjustments
in the model are driven more and more by the lower-
frequency words which are producing comparatively
higher error rates. As reflected in Fig. 6, early in training
the model’s weight changes are driven more by the higher
frequency words as these occur more often in the model’s
exposure, but then as error rates reduce for mapping the
higher frequency words, the lower frequency words then
begin to drive error rates, resulting in a later decrease in
the frequency effect for these lower-frequency words.

The consequence of this error-driven learning is that, as
the model produces representations closer to the target
representation, the variation in error also declines. Thus,
the reduction in the frequency effect is akin to a ‘‘floor”
effect in performance. For instance, across all five simula-
tions, at 10,000 epochs of training for the model’s phono-
logical output, mean error = 1.23, variance = 3.35. By
100,000 epochs, mean = .184, variance = .506, and by
1,000,000 epochs, mean = .00179, variance = .00371.
Whereas the ratio of mean to variance remains similar,
the size of the mean error reduces greatly. Our model is a
simulation of the processes involved in lexical access,
whereas other models of lexical processing may also con-
sider the decision making processes involved in generating
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Fig. 5. Mean square error of the model’s productions by word frequency for all 6229 words in the vocabulary, for orthography to phonology (O? P) and
orthography to semantic (O? S) mappings at different stages of training. Solid lines show the linear regression fit.

Fig. 6. Frequency effect for orthographic to phonological (O? P) and
orthographic to semantic (O? S) representations across learning for
higher and lower frequency words. Error bars show ±1 SEM of mean
correlation between word frequency and error by simulation.
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a response. When mean and variance associated with lex-
ical access reduce in absolute terms (as for our model after
extended training), the variation in responses associated
with lexical access will be overwhelmed by noise associ-
ated with decision making processes (Gomez & Perea,
2014; Norris, 2009; Ratcliff, Gomez, & McKoon, 2004).
Thus, absolute error reduction in lexical access will further
reduce observations of the frequency effect, as a conse-
quence of exposure, in behavioural studies of reading.
Simulation 2: frequency effects in the triangle model
trained with varying vocabulary size

In Simulation 1 there was a confound between the size
of the triangle model’s vocabulary and the size of the fre-
quency effect in terms of the model’s performance: The
model developed good representations for more words as
training increased. Thus, it is not possible from Simulation
1 to discern whether the reduction in the frequency effect
was directly caused by increased exposure to vocabulary,
or whether the effect of exposure on frequency effects
was mediated by increasing vocabulary knowledge. In
order to determine whether the frequency effect was
dependent on the model’s vocabulary size, we repeated
the simulations but varied the size of the vocabulary that
the model learned. If the frequency effect was found to
reduce as a consequence of vocabulary knowledge then a
smaller trained vocabulary should result in a larger fre-



Fig. 7. Orthography to phonology and orthography to semantics map-
pings accuracy for the model trained with different vocabulary sizes.
Overall, the larger vocabulary models performed less well. This was
particularly true for orthography to semantics.

Fig. 8. Frequency effects for orthography to phonology and semantics
mappings, for the triangle model trained with different vocabulary sizes.
Error bars show ±1 SEM of mean correlation between word frequency and
error by simulation.
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quency effect than found in Simulation 1. If, however, the
frequency effect is due to exposure then the vocabulary
size of the training set should not affect performance, but
rather the frequency effect should be related directly to
the number of exposures to words.

Method

Architecture
The architecture was the same as in Simulation 1.

Training and testing
We compared performance of the model when trained

on 1000, 2000, and 4000 words. The set of words used
for training each vocabulary size was selected at random
from the 6229 words used in Simulation 1. The smaller
word sets were used for both the pretraining between
phonological and semantic representations, and for the full
triangle reading model. Pretraining on phonology to and
from semantics was stopped after 2 million patterns had
been presented. Training on the reading task was stopped
after 1 million training trials.

The subsets of words were randomly selected for each
of five separate runs of the model, to minimise differences
in performance associated with particular random subset
selections from the vocabulary.

Results

The triangle model’s performance was assessed in the
same way as for Simulation 1 by constructing mixed
effects models and testing individual factors and interac-
tions for their improvement to model fit.

Fig. 7 shows the accuracy of the model for mapping
from orthography to phonology and orthography to
semantics during learning for the 1000, 2000, and 4000
word sets. As anticipated, increasing the size of the vocab-
ulary resulted in a reduction in accuracy during training: A
generalized linear mixed effects model adding vocabulary
size as a fixed factor improved model fit compared to a
model with just random effects of simulation and word
and fixed effect of log of training epoch, v2(1) = 31,081,
p < .001. This effect of vocabulary size was greater for map-
ping to semantics than mapping to phonology: Adding an
interaction between mapping and vocabulary size
increased model fit compared to the model containing just
main effects, v2(1) = 4957.4, p < .001. The effect of vocabu-
lary size was particularly observed in the earlier stages of
training: adding an interaction between log of epoch train-
ing and vocabulary size increased model fit further, v2(1)
= 1090.4, p < .001.

Fig. 8 shows the frequency effect for the model during
training on different sized word sets, for both the semantic
and the phonological output representations. To compare
frequency effects for phonological and semantic represen-
tations, we found that, as for Simulation 1, adding the
interaction between frequency and mapping improved fit,
v2(1) = 48,281, p < .001. Thus, the frequency effect was lar-
ger for the semantic representations than for the phono-
logical representations. However, the interaction between
frequency, mapping, and vocabulary size also improved
fit, v2(1) = 8379.3, p < .001. The difference in frequency
effect between phonological and semantic representations
was greater for the 4000 vocabulary than the 2000 vocab-
ulary, t = 66.6, and the 2000 vocabulary resulted in a
greater difference than the 1000 vocabulary, t = 23.9, both
p < .001. The larger vocabulary size resulted in a greater
difference in difficulty of learning arbitrary (semantic) ver-
sus quasi-systematic (phonological) mappings because
learning a larger set of arbitrary patterns is more difficult
than learning a smaller set (as shown in Fig. 7).

For each vocabulary size, the model demonstrated a
reduction in the frequency effect during training. We
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tested the effect of vocabulary size on the frequency effect
for the phonological and semantic representations sepa-
rately, by first constructing a baseline linear mixed effects
model with the closeness of the model’s production to the
target as the dependent variable, random effects of simula-
tion and word, and fixed effects of log of training epoch,
frequency and vocabulary size. The effect of vocabulary
size on the frequency effect is determined by examining
the interactions between the fixed effects.

For the phonological representations, adding the inter-
action between frequency and log of training epoch
resulted in a significant improvement in fit, v2(1)
= 11,711, p < .001, thus confirming the effect of frequency
changing with training that was also observed for the full
set of 6229 words. Adding the interaction between fre-
quency and vocabulary size significantly improved model
fit, v2(1) = 266.13, p < .001, with the magnitude of the fre-
quency effect greater for 4000 words than 2000 words,
t = 6.38, and the frequency effect for 2000 words greater
than that for 1000 words, t = 12.09, both p < .001. Adding
the three-way interaction between log of training epoch,
frequency and vocabulary size to a model with all main
effects and two-way interactions also resulted in a signifi-
cant improvement in fit, v2(1) = 4.5263, p = .034. The
decline in the frequency effect with training was greater
for the 2000 word vocabulary than the 4000 word vocabu-
lary, t = 7.11, and the 4000 vocabulary decline was greater
than the 1000 word vocabulary, t = 8.64, both p < .001.
Thus, the change in the frequency effect was affected by
vocabulary size, but was not monotonically related to
vocabulary size: a larger vocabulary resulted in a smaller
reduction in the frequency effect than a medium vocabu-
lary. Overall, controlling for vocabulary size, the observa-
tion that frequency effects declined with training
exposure was highly reliable.

We further tested whether the observation from Simu-
lation 1 that the frequency effect changed direction as a
consequence of training for the varying vocabulary sizes.
We compared models with a linear and a quadratic inter-
action effect of frequency and log epoch, and found that
the quadratic improved fit of the model over all three
vocabulary sizes combined, v2(2) = 30,394, p < .001, indi-
cating that, overall, there was a quadratic effect of fre-
quency against exposure similar to Simulation 1.
However, the three-way interaction between vocabulary
size, frequency, and quadratic function of log epoch
improved fit further, v2(1) = 7312.1, p < .001, indicating
that the quadratic effect decreased with smaller vocabu-
lary sizes. Investigating the vocabulary sizes individually,
the quadratic effect improved model fit for all vocabulary
sizes: for 1000 words, v2(2) = 7974.7; for 2000 words,
v2(2) = 12,300; for 4000 words, v2(2) = 15,510, all
p < .001. Though Fig. 8 illustrates an initial increase for
the 1000 word vocabulary for phonological representa-
tions, the quadratic fit indicates that the change in direc-
tion occurs at an early point in training. Thus, the change
of direction in the frequency effect is greater for larger
vocabulary sizes, but the effect is still discernible for smal-
ler vocabulary sizes. We interpret this as being due to the
difficulties in developing high-fidelity representations
when the vocabulary size is greater, resulting in a larger
initial increase in frequency effects with the larger
vocabularies.

For the semantic representations, the same series of
models were tested as for the phonological representa-
tions. The interaction between frequency and log of train-
ing epoch improved model fit significantly, v2(1) = 58,475,
p < .001. Frequency by vocabulary size also improved
model fit, v2(1) = 23,879, p < .001, with the frequency
effect largest for 4000 words, then 2000 words, then
1000 words, t = 73.2, t = 29.1, both p < .001. Adding the
three way interaction also significantly improved fit,
v2(1) = 3851.7, p < .001. In this case, there was a mono-
tonic relation between vocabulary size and change in the
frequency effect, such that the rate of change was highest
for 4000 words than 2000 words, which was in turn higher
than for 1000 words, t = 36.60, t = 28.36, respectively, both
p < .001. However, importantly it remained the case that,
when controlling for vocabulary size, frequency effects
reduced as exposure increased.

The change in frequency effect with exposure was again
found to be improved by a quadratic fit over the three
vocabulary sizes, v2(2) = 20,977, p < .001, however, as with
the phonological representations, the interaction between
vocabulary size and frequency and the quadratic of log
epoch also significantly improved fit, v2(2) = 11,275,
p < .001. For each vocabulary size individually, the quadra-
tic improved fit: 1000 words: v2(2) = 11,834; 2000 words:
v2(2) = 17,899; 4000 words: v2(2) = 8657.6, all p < .001. All
vocabulary sizes demonstrated the change in direction of
the frequency effect, though this was largest for the 2000
word condition.

All in all, there is little evidence that larger vocabulary
sizes lead to smaller frequency effects. If anything, they
induce stronger overall frequency effects. Furthermore, at
least in the case of orthography to phonology mappings,
a larger vocabulary is even protective against a change in
frequency effects as a consequence of additional training.
Thus, the behavioural effects relating to frequency effect
changes are not simulated in the model by vocabulary size
increasing, but are due instead to exposure. Furthermore,
our interpretation of the frequency effect change as being
driven by two processes – an initial increase in the fre-
quency effect as representational fidelity improves, then
decrease with exposure to items – is shown to be general-
izable across these vocabulary sizes.

However, in Simulation 2 the selection of subsets of
words was random which may not perfectly reflect the sit-
uation of actual acquisition, where smaller vocabularies
are likely to comprise the most frequent words. In order
to test whether vocabulary size might affect frequency
effects if smaller vocabularies constitute the subset of
higher-frequency words, we conducted Simulation 3.
Simulation 3: frequency effects in the triangle model
trained with varying vocabulary size

This simulation was similar to that of Simulation 2,
except that the subsets of 1000, 2000, and 4000 words
comprised the most frequent words from the larger vocab-
ulary, in order to simulate the greater likelihood of smaller



Fig. 9. Orthography to phonology and orthography to semantics map-
pings accuracy for the model trained with different vocabulary sizes,
selected as the most frequent words.

Fig. 10. Frequency effects for orthography to phonology and semantics
mappings, for the triangle model trained with different vocabulary sizes
for the most frequent 1000, 2000, or 4000 words in the corpus. Error bars
show ±1 SEM of mean correlation between word frequency and error by
simulation.

12 P. Monaghan et al. / Journal of Memory and Language 93 (2017) 1–21
vocabularies being composed of higher frequency words.
We predicted similar effects to those of Simulation 2,
namely that we would observe a reduction in the fre-
quency effect for all vocabulary sizes with training, and
that a larger vocabulary size would not relate to reduced
frequency effects than a smaller vocabulary.

Method

Architecture
The architecture was the same as in Simulation 1.

Training and testing
We compared performance of the model when trained

on the 1000, 2000, or 4000 most frequent words from
the 6229 words used in Simulation 1. Training and testing
was otherwise identical to that of Simulation 2.

Results

The triangle model’s performance was assessed in the
same way as for Simulation 2 by constructing mixed
effects models and testing individual factors and interac-
tions for their improvement to model fit.

Fig. 9 shows the accuracy of the model for mapping
from orthography to phonology and orthography to
semantics during learning for the 1000, 2000, and 4000
word sets. As for Simulation 2, increasing the size of the
vocabulary resulted in a reduction in accuracy during
training: A generalized linear mixed effects model adding
vocabulary size as a fixed factor improved model fit com-
pared to a model with just random effects of simulation
and word and fixed effect of log of training epoch, v2(1)
= 6514.8, p < .001. Again, like Simulation 2, the effect of
vocabulary size was significantly different for mapping to
semantics than mapping to phonology: Adding an interac-
tion between mapping and vocabulary size increased
model fit compared to the model containing just main
effects, v2(1) = 1149.8, p < .001. Also similar to Simulation
2, the effect of vocabulary size was greater in the earlier
stages of training: adding an interaction between log of
epoch training and vocabulary size significantly increased
model fit, v2(1) = 1568.6, p < .001.

Fig. 10 shows the frequency effect for the model during
training for semantic and the phonological output for the
different vocabulary sizes in Simulation 3. There was a
reduction in the frequency effect as vocabulary size
reduced. As Simulation 2, the effect of vocabulary size on
the frequency effect was determined by examining the
interactions between the fixed effects, by testing the
improvement of fit over a baseline model containing only
random effects and main effects.

As for Simulations 1 and 2, frequency effects were
found to be larger for semantic than phonological repre-
sentations, v2(1) = 41,545, p < .001. As for Simulation 2,
the interaction between frequency, mapping, and vocabu-
lary size improved fit, v2(1) = 5197.5, p < .001. The differ-
ence in frequency effect was greater for 4000 than 2000
words, t = 60.3, and greater for 2000 than 1000, t = 6.0,
both p < .001, consistent with an enhanced difference for
a model required to learn a larger versus a smaller set of
harder arbitrary (semantic) versus easier quasi-
systematic (phonological) mappings.

For the phonological representations, adding the inter-
action between frequency and log of training epoch
resulted in a significant improvement in fit, v2(1)
= 12,613, p < .001, the effect of frequency changed with
training in the same way as for Simulations 1 and 2. Adding
the interaction between frequency and vocabulary size sig-
nificantly improved model fit, v2(1) = 33.037, p = .001,
with the magnitude of the frequency effect greater for
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4000 words than 2000 words, t = 2.31, p = .021, which was
greater than 1000 words, t = 2.52, p = .012. Adding the
three-way interaction between log of training epoch, fre-
quency and vocabulary size to a model with all main
effects and two-way interactions also resulted in a signifi-
cant improvement in fit, v2(1) = 176.93, p < .001. The
effects were similar to those for Simulation 2: the larger
vocabulary related to a larger frequency effect. When
vocabulary size was controlled, the frequency effect was
found to decrease as a consequence of extended training.

As for Simulation 2, the change in frequency effect with
exposure was found to be improved by a quadratic fit over
the three vocabulary sizes, v2(2) = 46,623, p < .001. Also as
for Simulation 2, the interaction between vocabulary size,
frequency and quadratic of log epoch also improved fit,
v2(2) = 32,477, p < .001. For each vocabulary size individu-
ally, the quadratic again improved fit: 1000 words: v2(2)
= 5098.5; 2000 words: v2(2) = 20,332; 4000 words: v2(2)
= 26,010, all p < .001. Again, all vocabulary sizes demon-
strate the change in direction of the frequency effect.

For the semantic representations, the interaction
between frequency and log of training epoch improved
model fit significantly, v2(1) = 63,787, p < .001. Frequency
by vocabulary size also significantly improved model fit,
v2(1) = 4.927, p = .026. Adding the three way interaction
did significantly improve fit, v2(1) = 4268.9, p < .001. As
with the phonological effects, the larger vocabularies
resulted in a larger frequency effect, and demonstrated
that, when controlling for vocabulary size, the frequency
effect reduced with exposure.

For the quadratic fit of log epoch, the interaction with
frequency improved fit over all three vocabulary sizes for
the semantic representations, v2(2) = 56,523, p < .001.
There was a significant improvement in fit with the inter-
action between vocabulary size, frequency and the quadra-
tic of log epoch, v2(2) = 37,148, p < .001. As with
Simulation 2, the quadratic improved fit for each vocabu-
lary size: 1000 words: v2(2) = 11,834; 2000 words: v2(2)
= 17,899; 4000 words: v2(2) = 8657.6, all p < .001. The
results show that, as for Simulation 2, there is a change
in direction of the frequency effect with training, with
the size of the effect changing, but the qualitative nature
of this change unaffected by vocabulary size.

Thus, the results of Simulation 2 and 3 indicate that a
larger vocabulary was protective against reduced fre-
quency effects, rather than the cause of frequency effect
changes with training as could be expected given the
stronger competition possible from a larger vocabulary.
Therefore, the smaller frequency effect for people with
large vocabularies found in lexical decision tasks cannot
be explained by vocabulary size itself. At the same time,
Simulations 2 and 3 confirmed the finding of Simulation
1 that extra exposure undoes the larger frequency effect
related to the knowledge of more words. Towards the
end of the training, the frequency effect was similar for
all vocabulary sizes tested. After 1 million training trials
the frequency effect on the O? S mappings was smaller
for the model trained on 4000 words than for the model
with 1000 words trained after 20K trials, even when the
latter 1000 words were the most frequent ones (Fig. 10).
Simulation 4: frequency effects in first and second
languages

Simulations 1, 2, and 3 established that, in the triangle
model, the frequency effect in learning to read a single lan-
guage can relate to exposure. In bilinguals, mapping
between orthographic, phonological, and semantic repre-
sentations in two languages, frequency effects have been
shown to be stronger compared to monolinguals (Gollan,
Montoya, Cera, & Sandoval, 2008; Ransdell & Fischler,
1987). An explanation for this has been in terms of fre-
quency of usage (Gollan et al., 2008): As bilinguals have
less exposure to each language, they have ‘‘weaker-links”
between orthographic, phonological, and semantic repre-
sentations and this will be particularly harmful for access-
ing low frequency words.

An alternative account of reduced frequency effects is
increased interference between languages: there is greater
competition amongst a vocabulary that is almost twice as
large in bilinguals than monolinguals, reducing the psy-
cholinguistic effects influencing lexical access in a single
language (Costa, 2005; Peterson & Savoy, 1998). Such influ-
ences across languages are well-attested, with L2 acquisi-
tion resulting in slower lexical access to L1 (Kroll,
Michael, Tokowicz, & Dufour, 2002; Linck, Kroll, &
Sunderman, 2009) and a larger frequency effect, even in
the dominant language (Gollan et al., 2008).

In terms of comparison of frequency effects within
bilingual speakers, the frequency effect is typically larger
in L2 than in L1 (Cop, Keuleers, Drieghe, & Duyck, 2015;
de Groot, Borgwaldt, Bos, & van den Eijnden, 2002;
Duyck, Vanderelst, Desmet, & Hartsuiker, 2008; Van
Wijnendaele & Brysbaert, 2002; Whitford & Titone,
2012). In a mega-study, Lemhöfer et al. (2008) tested Eng-
lish word identification in English monolingual and bilin-
gual Dutch, French, and German speakers, and found a
larger L2 frequency effect than L1 in English, which was
due principally to greater slowing of low-frequency words
in the L2 speakers. Diependaele et al. (2013) argued that
this difference disappears when vocabulary size in each
language is taken into account, and in a more recent
mega-study Brysbaert et al. (in press) confirmed that most
of the difference in frequency effects between L1 and L2
was due to vocabulary size, taken as a proxy for exposure
to each language.

In the present simulation, we investigated whether the
triangle model can simulate these effects by examining rel-
ative exposure to two languages. We tested two hypothe-
ses: (1) that exposure is the main determinant of the
difference in frequency effect between L1 and L2, and (2)
that knowledge of another language increases the fre-
quency effect in L1. We tested whether these hypotheses
were consistent with the triangle model’s performance
when trained on a second language. We chose Dutch as
the second language, as this language has a high degree
of orthographic overlap with English and was one of the
languages tested by Diependaele et al. (2013). We imple-
mented sequential acquisition (L2 introduced after some
time learning L1), as this is the typical state-of-affairs for
participants in research on bilingualism (Li & Zhao, 2013).



Fig. 11. Performance of the English monolingual model (Simulation 1),
and the bilingual model on English and on Dutch for mapping from
orthography to phonology and to semantics. Note that the English
monolingual orthography to phonology and orthography to semantics are
superimposed.
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Method

Architecture
The architecture of the model was the same as in Sim-

ulation 1.

Training and testing
The model was initially trained in the same way as Sim-

ulation 1, with pretraining on the 6229 English words,
between semantics and phonological representations, and
then training for 500,000 presentations of English ortho-
graphic words mapping onto phonology and semantics.

At this point the model was then trained on learning to
read an expanded set of words, including all 6229 words in
English together with 1536 Dutch words. These Dutch
words were all the words with the same meaning as Eng-
lish which were translated using Google translate as indi-
vidual monosyllabic words, and which were not identical
to the English orthographic forms. The orthographic forms
for these Dutch words were taken directly from the trans-
lation in Google translate. Phonological forms were derived
using the Dutch CELEX database, with Dutch vowels
mapped onto the nearest English noun, e.g., Dutch /ɑ/ (as
in bad /bɑt/) became English /æ/ (as in hat /hæt/), and
Dutch consonants mapping to the nearest English conso-
nant, e.g., Dutch /ʋ/ (as in wat /ʋɑt/) became English /w/
(as in wit /wIt/), with the exception of /x/ which was added
to the phonological inventory of the model. The semantic
forms were the same as the yoked English words. Fre-
quency was also taken to be the same as the yoked English
form. Thus, the model learned to map from new ortho-
graphic forms to new phonological forms, but onto previ-
ously experienced semantic representations.

The model was trained to read for a further 500,000
presentations of orthographic words mapping to phonol-
ogy and semantics. Words were selected randomly accord-
ing to frequency from the combined set of English and
Dutch words. Based on these frequencies, approximately
25% of patterns were Dutch and the remainder English
words.

Additional simulations tested the effect of the varying
proportion of English and Dutch words by increasing the
relative frequency of the Dutch words. We investigated
simulations where 50% of training patterns were English
and 50% were Dutch, and simulations where 25% of pat-
terns were English and 75% were Dutch.

The model was tested in the same way as in Simulation
1, except that the test set included all English and all Dutch
words experienced during training.

Results

Fig. 11 shows the model’s learning from the original
monolingual simulation (Simulation 1) against the model’s
performance for learning both English and Dutch from
500,000 patterns onwards, after initial training only on
English. For comparison to the original simulation, perfor-
mance for the 75% English and 25% Dutch simulation is
shown.

For English words in the bilingual model, there was a
slight decrement in performance that was caused by intro-
duction of the Dutch words. As Dutch requires some
remapping of the orthography to phonology statistical
relations, and interleaving of new orthography to seman-
tics representations, this caused interference in the mod-
el’s performance. For instance, for orthographic input
‘‘bad”, the model has to map onto the phonology of both
/bæt/ in Dutch and /bæd/ in English, and onto meanings
of ‘‘bath” in Dutch and ‘‘bad” in English. Furthermore, map-
ping onto the semantics of ‘‘bath” would also result in
interference along the semantics to phonology pathway,
as the model learns that this can map onto the phonologi-
cal form in English or in Dutch. However, performance
remained highly accurate and recovers to levels close to
perfect performance at the end of training.

Interestingly, for the Dutch words, before training on
any Dutch mappings the triangle model is able to accu-
rately read some Dutch words. This is not so surprising
for the orthography to phonology mappings because there
is considerable overlap in the letter-to-sound correspon-
dences in English and Dutch, and so the model is able to
generalise accurately to approximately 24% of the Dutch
words. However, the model is also able to correctly gener-
alise to approximately 6% of orthography to semantics
mappings in Dutch. This is somewhat surprising because
perfect cognate forms were not included in the Dutch word
set, but it indicates that very similar orthographic forms
had, in these cases, similar meanings in Dutch and in Eng-
lish (e.g., Dutch bal /bɑl/, English ball /bɔ:l/, Dutch licht /
lIxt/, English light /laIt/). Over time, the triangle model’s
learning of the Dutch mappings improves, most rapidly
for phonology, and more gradually for Dutch meanings.
Overall, then, the model was effective at learning to read
bilingually: by the end of training the triangle model had
high accuracy in mapping words in both English and
Dutch.



Fig. 12. Effect of varying exposure to Dutch on English reading accuracy.

Fig. 13. Effect of varying exposure to Dutch on Dutch reading accuracy.
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The effect of the relative frequency of English and Dutch
words during training on learning the orthography to
phonology mappings is shown in Fig. 12 for English words,
and Fig. 13 for Dutch words. Unsurprisingly, increased
exposure in Dutch resulted in increased speed of learning
for Dutch. The fit of a generalized linear mixed effects
model on accuracy for phonological representations in
Dutch, with simulation and word as random effects, and
training epoch as fixed effect was significantly improved
by adding proportion of Dutch training, v2(1) = 1144,
p < .001. Accuracy was higher for 75% Dutch than 50%
Dutch, t = 12.89, which was in turn higher than 25% Dutch,
t = 20.98, both p < .001. For English, decreasing exposure to
English resulted in a smaller effect, but still reliable impact
on learning, v2(1) = 848.43, p < .001, with lower accuracy
for 75% Dutch than 50% Dutch in English reading,
t = 15.59, and 25% Dutch exposure resulted in still higher
English reading accuracy, t = 13.58, both p < .001.

For orthography to semantic mappings, proportion of
Dutch exposure again had an influence on Dutch reading
accuracy, v2(1) = 2846.2, p < .001, with 75% Dutch expo-
sure resulting in higher accuracy than 50% Dutch exposure,
which was in turn more accurate than 25% Dutch exposure,
t = 14.18, t = 37.05, respectively, both p < .001. For English
reading accuracy, exposure was again a significant factor,
v2(1) = 1877.6, p < .001, with 75% Dutch exposure resulting
in lower accuracy than 50%, t = 17.92, which was in turn
lower than 25% Dutch exposure, t = 25.68, both p < .001.

The effect of varying exposure to a second language on
frequency effects in first and second language is shown in
Fig. 14.

For English, increased exposure to the second language
(Dutch) resulted in increased frequency effects in English.
A linear mixed effects model on closeness of the model’s
phonological production to the target phonology as depen-
dent variable, simulation and word as random effects, log
epoch of training, frequency, and proportion of Dutch
training as fixed effects was improved in fit by adding an
interaction between frequency and proportion of Dutch
training, v2(1) = 72.014, p < .001, with 75% Dutch exposure
resulting in a larger magnitude of the frequency effect than
50% Dutch exposure, t = 8.50, which was in turn larger than
the effect from 25% Dutch exposure, t = 5.51, both p < .001.
The rate of change of the frequency effect with length of
exposure was also related to the proportion of Dutch train-
ing. Adding the three-way interaction between frequency,
log of epoch of training, and proportion of Dutch exposure
to a model containing random effects and main and two-
way effects improved model fit significantly, v2(1)
= 7.350, p = .007. The rate of change was greater for 75%
exposure to Dutch than 50% exposure to Dutch, t = 2.71,
p < .001, but 50% and 25% exposure to Dutch did not differ,
t = .23, in their effects on the frequency effect in English
(see Fig. 14A).

For semantic representations in English, the effect of
Dutch exposure was greater still. The interaction between
frequency and proportion of Dutch exposure significantly
improved model fit, v2(1) = 133.8, p < .001, with 75% Dutch
exposure resulting in a greater magnitude of the frequency
effect than 50% Dutch, t = 11.62, which was greater in turn
than 25% Dutch, t = 16.02, both p < .001. The three-way
interaction also significantly improved model fit, v2(1)
= 11.217, p < .001, with the rate of change greater for the
75% Dutch exposure than 50%, t = 3.36, which was greater
rate of change than for the 25% exposure, t = 4.95, both
p < .001 (Fig. 14C).

Increase in exposure to the second language (Dutch)
resulted in a decrease in frequency effects in second lan-
guage (Dutch) for phonological representations: a linear
mixed effects model on the closeness of the model’s
phonological productions to the target with simulation
and word as random effects and word frequency and pro-
portion of Dutch as main effects was improved in its fit by
adding the interaction between frequency and proportion
of Dutch exposure, v2(1) = 98.59, p < .001. 25% Dutch expo-
sure resulted in a higher frequency effect than 50%,
t = 23.16, which was in turn higher than 75%.



Fig. 14. Frequency effect affected by exposure to second language. (A) Effect of Dutch exposure on English orthography to phonology; (B) effect on Dutch
orthography to phonology; (C) effect on English orthography to semantics; (D) effect on Dutch orthography to semantics. Notice that as the curves go higher
in this figure, they approach a frequency effect of 0; lower values mean a stronger frequency effect.
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Dutch exposure, t = 14.33, both p < .001. Adding the
interaction between frequency, Dutch exposure, and log
epoch training exposure improved fit compared to a model
containing main effects and two-way effects, v2(2)
= 68.286, p < .001, indicating a greater change of frequency
effect with training time for the 25% Dutch exposure than
50% Dutch exposure, t = 3.311, and smaller change still for
the 75% Dutch exposure, t = 4.902, both p < .001 (see
Fig. 14B).

For semantics, increase in exposure to Dutch also
resulted in a reduced effect of frequency for Dutch
(Fig. 14D). Adding the interaction between word frequency
and proportion of Dutch improved model fit, v2(1)
= 899.47, p < .001, with the magnitude of the effect signif-
icantly larger for 25% Dutch than 50% Dutch exposure,
t = 41.09, and smaller still for 25% Dutch, t = 31.08,
p < .001. Adding the three-way interaction to the model
also improved fit, v2(1) = 118.17, p < .001, indicating that
the effect declined at a greater rate with further training
for 25% compared to 50%, t = 8.60, and 50% compared to
75% Dutch exposure, t = 11.28, both p < .001.

All in all, the results of the simulations agree rather well
with the behavioural findings: (1) The English frequency
effects become stronger with more use of Dutch, but (2)
decrease as the training continues. We also see (3) a stron-
ger frequency effect in L2 when it is used less frequently
(i.e., for the Dutch 25% exposure). However, from Fig. 14,
there is a suggestion that the frequency effect in the 75%
Dutch condition was very small (panels B and D). This
was partially a consequence of measuring the frequency
effect only after 100,000 training presentations to the
model. Comparing to the different vocabulary conditions
of Simulation 2 (Fig. 8), after 100,000 epochs the frequency
effect for phonological and semantic representations in the
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1000 word simulation had already substantially declined.
Investigating the Dutch model at earlier training stages,
we found that frequency effects were initially higher than
those observed after 100,000 bilingual training trials for
the semantic representations: after 540,000 trials, the fre-
quency effect peaked at �.093 (SD = .020). Yet, the fre-
quency effect for phonology remained small, but
significantly different than chance, at these earlier training
stages (e.g., after 560,000 trials, the frequency effect
peaked at mean = �.025, SD = .024). It could be that the
small frequency effect in Dutch was due to optimising
the merging of the statistics of the mappings for Dutch
and English orthography to phonology mappings when
sufficient exposure to Dutch was available, thereby result-
Fig. 15. Frequency effect according to exposure to second language, controlling fo
Dutch orthography to phonology; (C) English orthography to semantics; (D) Du
ing in Dutch words being processed with similar levels of
ease regardless of their individual frequencies. As the over-
lap between orthography and semantics is only very low
between these languages, we do not observe a reduced fre-
quency effect for the semantic representations.

However, note that the simultaneous exposure to the
two languages exacerbates the frequency effect: the 25%
Dutch exposure model has had the same exposure to
Dutch at 700,000 epochs of training as the 50% Dutch expo-
sure model has had at 600,000 epochs, and yet the fre-
quency effects appear to still be enhanced in this second
language. To test this possible enhancement from learning
in another language, independent of exposure to the lan-
guage in which frequency effects are to be tested, we anal-
r exposure in the first language. (A) English orthography to phonology; (B)
tch orthography to semantics.
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ysed a subset of the model data equating the exposure to
each language, and comparing the frequency effect across
exposure conditions. Thus, for English, we compared the
frequency effect of the model for the 25% Dutch exposure
training at 600,000 epochs, the 50% Dutch exposure train-
ing at 700,000 epochs, and the 75% Dutch exposure train-
ing at 800,000 epochs. For Dutch, we measured the
frequency effect for the 25% Dutch exposure training con-
dition at 800,000 epochs, the 50% Dutch exposure training
at 700,000 epochs, and the 75% Dutch exposure training at
600,000 epochs. The results for frequency effects in
phonology and in semantics are summarised in Fig. 15.

Baseline linear mixed effects models on the frequency
effect were first constructed, with simulation and word
as random effects and frequency and exposure condition
as factors. Then, the improvement in fit when the interac-
tion between frequency and exposure condition was
determined.

For English, the intensity of Dutch exposure had a sig-
nificant effect for orthography to phonology mappings,
v2(1) = 58.435, p < .001, and for orthography to semantics,
v2(1) = 811.99, p < .001. Similarly, for Dutch, intensity of
exposure was significant for orthography to phonology,
v2(1) = 12.147, p < .001, and for orthography to semantics,
v2(1) = 83.464, p < .001. The effects of intensity affected
both languages in a similar way: there was greater reduc-
tion of the frequency effect if exposure to Dutch was more
intense, which applied both to English words and Dutch
words in the bilingual model.

A further analysis of the 25%, 50%, and 75% Dutch expo-
sure simulations, controlling for accuracy of Dutch reading
instead of exposure to Dutch, resulted in a similar pattern
of effects. At 600,000 epochs, the 75% Dutch exposure sim-
ulations reached 93.6% (SD = 24.4%) for phonology and
89.9% (SD = 30.1%) for semantics. At 700,000 epochs, the
50% Dutch exposure simulations reached similar accuracy
(phonology mean = 92.9%, SD = 25.7%; semantics
mean = 88.5%, SD = 31.9%). At 1,000,000 epochs, the 25%
Dutch exposure was similarly accurate (phonology
mean = 92.5%, SD = 26.3%; semantics mean = 88.1%,
SD = 32.4%), so these simulations at these training epochs
were compared. Intensity of Dutch exposure influenced
frequency effects in English for both orthography to
phonology, v2(1) = 198.44, p < .001, and orthography to
semantics, v2(1) = 3241, p < .001. Similarly, intensity of
Dutch exposure influenced frequency effects in Dutch in
phonology, v2(1) = 145.51, p < .001, and semantics, v2(1)
= 478.56, p < .001. As with the simulations controlling for
exposure to Dutch, when controlling for accuracy of perfor-
mance in Dutch, increased intensity of Dutch exposure
resulted in a smaller frequency effect in both languages.

Thus, frequency effects were not entirely independent
in first and second language, and therefore cannot be com-
pletely accounted for by exposure within a language in the
model’s performance, as Diependaele et al. (2013) have
proposed. Instead the results seem consistent with the
weaker-links hypothesis of Gollan et al. (2008), who pro-
posed that learning a second language can reduce the
strength of mapping between orthography and phonology
and semantics in a first language. This weaker links prop-
erty of the model is an emergent result of training the
model on multiple languages, and such weakening of links
does not have to be explicitly included in the model.
General discussion

Individual differences in performance for language
tasks are a topic of growing interest (Andrews, 2015; Yap
et al., 2012). Such variation can provide insight into the
processing parameters that underlie behaviour. In word
naming and lexical decision tasks, a key observation is that
psycholinguistic effects may vary across participants. Indi-
vidual differences in the variance in response times and
accuracy explained by psycholinguistic variables can be
partially accounted for by age (Morrison, Hirsh, Chappell,
& Ellis, 2002), by language proficiency (Chateau & Jared,
2000; Diependaele et al., 2013; Lewellen et al., 1993;
Preston, 1935; Sears et al., 2008; Yap et al., 2008, 2012),
or as a consequence of language exposure (Brysbaert
et al., in press; Kuperman & Van Dyke, 2013). Of particular
interest to us was to examine the potential causes of the
frequency effect, because it accounts for a large proportion
of variance in lexical processing accuracy and response
times in behavioural studies. Our simulations were able
to replicate observed differences in frequency effects for
lexical processing tasks that principally involve mapping
from orthography to phonology and those that map from
orthography to semantics (Ghyselinck et al., 2004).

We considered four possible explanations for the obser-
vation that participants with larger vocabularies have
lower frequency effects. First, the relation between size
of the frequency effect and vocabulary size may be a mere
side-effect of quicker response times in those with greater
language proficiency. In this case, the frequency effect may
be reduced in those with higher language proficiency
because of a floor effect in response times. Our Simulation
1 demonstrated that greater proficiency could be related to
frequency effects, but went further than previous beha-
vioural studies by demonstrating a potential cause of this
relation: due to amount of exposure to language by the
reading system. Furthermore, the origin of the reduced fre-
quency effect was primarily due to reduction of error vari-
ance for lower frequency words in the triangle model. This
change in the model’s mappings between representations
is a consequence of error-driven learning in the model,
such that those patterns that contribute most error con-
tribute most change to weights on connections within
the model. As error from low-frequency words is greater
than that for high-frequency words, the low-frequency
words are contributing most to reconfiguring the model’s
structure by reducing the model’s error for those low-
frequency patterns. Thus, the reduced frequency effect
was not entirely due to a general improvement in response
fidelity across all stimuli, in contrast to this first explana-
tion. However, the overall reduction in error for the mod-
el’s representations of phonological and semantic forms
of words is consistent with a contribution of frequency
effect reduction relating to response variation associated
with psycholinguistic processes of lexical access associated
with generation of the decision making response (e.g.,
Norris, 2009). Furthermore, we established in Simulations
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2 and 3 that vocabulary size was not the key variable
underlying changes in frequency effects, but rather
amount of exposure was the critical driver behind efficient
processing of mappings between representations.

The second explanation for variation in frequency
effects was that language proficiency is related to intelli-
gence, and intelligence is underwritten by greater speed
of processing, which could again compress frequency
effects for those with higher intelligence. Here, the data
and computational modelling of bilingual participants is
crucial. Diependaele et al. (2013) showed that frequency
effects were not person-dependent but rather dependent
on the individual’s proficiency in the language being
tested. We showed that the triangle model can be
extended to learn to read words in second language, and
that varying the exposure of the model to first and second
language could predict the pattern of frequency effects for
L1 and L2 speakers. Simulation 4 demonstrated that
increased exposure to L2, with a concomitant increase in
proficiency in L2, resulted in increased frequency effects
in L1 and reduced frequency effects in L2. However, the
model’s performance was not wholly accounted for by
amount of exposure within a language, as there was evi-
dence that intensity of exposure also affected the size of
frequency effects. In both first and second languages,
greater intensity of second language exposure reduced
the size of frequency effects when total exposure within
each language was controlled. Indeed, increased intensity
of exposure to a second language could be hypothesised
to result in increasing the noise in mappings for the first
learned language, thereby increasing the frequency effect
in that first language, due to reduction in compression.
However, the opposite was the case: the increase of the
L1 frequency effect was largest in the 25% Dutch exposure
situation. The finding that our model predicts an increase
in the L1 word frequency effect when another language
is learned, is a finding consistent with studies of interfer-
ence effects across languages (e.g., Costa, 2005; Gollan
et al., 2008; Linck et al., 2009), where acquisition of an L2
can increase response times in L1. Such effects may be
observed at both the lexical access stage of language pro-
cessing (as demonstrated in our model) as well as affecting
decision making processes, as reflected in the subtle effects
of L2 revealed in the diffusion model simulations of beha-
vioural results in Brysbaert et al. (in press).

The third explanation for reduced frequency effects is
that greater exposure to a language results in proportion-
ally more exposure to lower frequency words (Kuperman
& Van Dyke, 2013). However, the frequency compression
used for sampling of input to the model meant that even
all the low frequency words were highly likely to occur
even in small samples. For instance, by 200,000 random
samples, the point at which frequency effects tend to
decrease in magnitude, 99.9% of words will have been sam-
pled. Furthermore, sampled word frequencies at 100,000,
200,000, and 300,000 epochs were correlated at 1.00. Thus,
sampling biases are not sufficient to explain the triangle
model’s performance.

The fourth explanation we considered was that expo-
sure is the key factor underlying the relation between lan-
guage proficiency and size of frequency effects between
individuals. Training a model that learns to map between
orthographic and phonological and semantic representa-
tions with increasing efficiency demonstrated the same
effects as those observed in participants. Furthermore, size
of vocabulary was not sufficient to explain the model’s per-
formance. The triangle model therefore tests the adequacy
of a theory based on language exposure resulting in greater
efficiency of accessing representations of words. This theo-
retical principle was shown to account also for individual
difference effects observed in reading in L1 and L2, and
these data are critical for distinguishing exposure effects
from other individual variation in cognitive processing that
could affect performance. For instance, efficiency of map-
pings between representations can be the result of the
amount of resources serving mappings in a computational
model, or by the learning function – faster learning relates
to a higher learning rate parameter in the model, or by
increasing the speed with which information can pass
within the network (e.g., Faust et al., 1999; Plaut &
Booth, 2000). All these parameters are potentially adjusta-
ble in the model, but none would explain the apparent
interaction between size of frequency effects in L1 and
L2. Adjustments to resources, rate of learning, or speed of
processing would result in similar effects in both first
and second language, whereas, the size of the frequency
effects are shown to be inversely related to proficiency
for each language. We thus contend that additional factors
contributing to individual differences in the frequency
effect are not necessary to explain the data, and that an
explanation based on exposure is the most parsimonious
explanation for the observed effects.

Similarities between first and second languages may
influence the extent to which multiple languages influence
processing in the other language. Kaushanskaya, Yoo, and
Marian (2011) found that for English-Spanish bilinguals,
proficiency in Spanish reading was associated with profi-
ciency in English reading. However, for English-Mandarin
bilinguals, self-reported Mandarin reading proficiency
was associated with lower English reading skills. The sim-
ulations of bilingual reading we have performed have
involved two closely-related languages, with overlapping
orthographic and phonological mappings (consider the
bad/bath example, above). In a behavioural study on nam-
ing responses in English, Lemhöfer et al. (2008) found only
small differences in responses on English words between
English monolingual, Dutch-English, French-English, or
German-English bilinguals, apart from the enhanced fre-
quency effect for L2 speakers. So, such closely-related lan-
guages may not result in a strong interference effect. Yet,
simulating a wider range of languages, with varying
degrees of similarity among orthographic, phonological,
and semantic representations would enable us to deter-
mine the computational consequences of overlaying over-
lapping versus distinct mappings in the reading system.

Critically, the model predicted that changes in fre-
quency effects were not linear as a consequence of expo-
sure. Rather, frequency effects increased during early
stages of language processing, as the model develops an
accurate representation of words, and discrimination
between phonological and semantic forms, akin to devel-
opment of lexical quality (Perfetti, 2007). However, after
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these representations have become well-formed (from
about 100,000 to 200,000 epochs of training) the frequency
effect then begins to reduce, as a consequence of increasing
efficiency of the mappings. Thus, the triangle model gener-
ates the prediction that individual differences in lexical
processing are likely to reflect both this fidelity of repre-
sentation and efficiency of mapping, and can potentially
explain why frequency effects are less prominent in chil-
dren than young adults (Ellis, 2002; Garlock, Walley, &
Metsala, 2001), because frequency effects are reduced by
poorer quality of representation. However, our simulations
predict that with extensive exposure, frequency effects can
in principle fall below those of learners in early stages of
acquiring the language (see, e.g., Fig. 4), especially for
lower-frequency words (Fig. 6). Comparisons between
children and older adults would be one way to assess this
prediction.

Adelman et al. (2014) examined a range of psycholin-
guistic factors, including length, consistency and fre-
quency, in terms of parameter variation in DRC and CDP+
models. Their interest was the extent to which these mod-
els were sufficient to explain observed inter-individual
covariation in psycholinguistic variables derived from
behavioural mega-studies. Our aim for the current simula-
tions was different: to distinguish the relative contribu-
tions of language proficiency and the size of the
frequency effect in a computational model of reading that
can learn mappings as a consequence of exposure to the
vocabulary of a language. However, there are possibilities
for investigating the extent to which variation in training
the triangle model can reflect behavioural observations
for other psycholinguistic variables. For instance,
Adelman et al. (2014) co-located length and consistency
effects in the sublexical route of the DRC and CDP+ models,
and located frequency effects in the lexical route of these
models. This constrains the extent to which these variables
are likely to covary – length and consistency effects should
have similar coefficients for individuals, but may have dif-
ferent coefficients to that of frequency. In the triangle
model, we anticipate that variables such as length and con-
sistency should be related to exposure in a similar way to
frequency. This is because the effect of exposure on the
model is to increase efficiency of the mappings, and com-
press the size of the difference between mappings that
are initially difficult and those that are easier. Longer
words tend to contain more information in orthography
and in phonology and so are more complex to map than
shorter words. Inconsistent words are harder to map
because they benefit less than consistent words from
learning mappings for other words with similar ortho-
graphic forms. Future investigation of the triangle model
could determine the interplay between these factors and
the extent to which they are explained by exposure, or
require additional reconfiguring of architectural
parameters.

The computational modelling approach demonstrated
here enables isolation and control of various contributors
to behavioural performance. In this respect it provides a
useful accompaniment to approaches that demonstrate
the observed correlations among various psycholinguistic
variables. The computational modelling means that causal
relations among these variables can be tested. In particular,
we varied vocabulary size and exposure to measure how
frequency effects vary between individuals. In the triangle
model, exposure is the cause of variation in both vocabu-
lary learning and frequency effects, in both first and second
languages.
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